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1. Phys. A Math. Gen. 24 (1991) 4055-4066. Printed in the UK 

Total bandwidth for the Harper equation: 111. 
Corrections to scaling 

D J Thouless and Yong Tan 
Department of Physics FM-IS, University of Washington, Seattle, WA 98195, USA 

Received 21 January 1991 

Abstract. Earlier work on the spectral measure for the Harper equation (discrete Mathieu 
equation) showed that, i f  there is a large common period p for the lattice and the sinusoidal 
potential, the spectral measure scaled as C / p ,  where C is a constant independent of 
the number of oscillations q of the potential in p lattice spacings. In the present 
work the corrections to this scaling law are found far q = 1 and q = 2. For q = I it is shown 
that the corrections to scaling are logarithmic functions of p ,  while for q = 2  the leading 
corrections are reduced by a factor p-‘. Analytical and numerical support is given for the 
assertion that this difference between odd and even values of q persists for higher values 
of q provided they are substantially less than 4. 

1. Introduction 

The Harper equation (Harper 1955) 

V,c,_,+ V , c , , + , + 2 V 2 c o s ( 2 7 r ~ n + u ) c , =  Ec, (1.1) 

represents a discrete wave equation (tight binding model) with two competing periods, 
such as could arise in a one-dimensional quasicrystal. I t  was originally derived as the 
equation for an electron in a two-dimensional tight-binding crystal perturbed by a 
weak magnetic field. In fact the same equation is obtained also for free electrons in a 
uniform magnetic field perturbed by a two-dimensional sinusoidal potential. For these 
latter two cases rectangular symmetry of the lattice gives V ,  f V,, whereas the case of 
square symmetry leads to V,  = V,. 

This equation has some very interesting properties (Sokoloff 1985, Thouless 1990a). 
For irrational 4 the energy gaps are everywhere dense, so that the spectrum is a Cantor 
set (Azbel 1964). Numerical calculation of the spectrum for the case V,  = V, by 
Hofstadter (1976) has shown a beautiful self-similar structure, with a spectral measure 
that shrinks to zero for irrational 4. Aubry and Andri (1980) have shown that for 
V,  > V, all eigenstates are extended, while for VI < V, all eigenstates are localized with 
an energy-independent localization length for irrational 4. Furthermore the measure 
of the spectrum is 41 V,  - V,l, and shrinks to zero at the critical point V, = V, where 
the localization length becomes infinite. 

There are a number of papers in which scaling, perturbative, or semiclassical 
arguments have been applied to this equation (Sokoloff 1985, Wilkinson 1987, Bell 
and Stinchcombe 1989). In an earlier paper by one of us (Thouless 1983). which we 
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call B w i ,  the way in which the measure of the spectrum approaches its limiting form 
for irrational b when 4 = q / p  and p is large was studied by a combination of finite 
size scaling arguments and numerical studies of the spectrum. The finite size scaling 
form of the measure of the spectrum is 

D J Thouless and Yong Tan 

(1.2) 

where the scaling function f(x) was found to have a numerical value close to 9.33 at 
the origin. In a recent paper (Thouless 1990b), which we call BWZ, an analytic expression 
for the scaling function was obtained for the particular case q = 1, p odd, namely 

e-ln+1/2)x 8 "  
$7 n = o  ( n + t ) 2  ' 

f (x)=4x+- (-1)" 

Two questions raised by the results of BWI which were not answered in BWZ are why 
this scaling function depends only on the denominator p and not on the numerator q, 
and why the corrections to scaling are so sensitive to the value of q. 

In this paper, section 2 contains a brief summary of some of the numerical results 
on the sum of the widths of the bands (measure of the spectrum) for different q / p .  In 
particular there are graphs showing how for fixed denominator the corrections to 
scaling vary by several orders of magnitude as the numerator is changed. 

In section 3 the argument of BWZ, for the case q = 1, V,  = V, ,  is repeated more 
carefully using the WKB approximation to improve the approximation for the Green 
function. This improvement gives corrections to the scaling formula for p W  which, 
for very large p, are of order (log P ) - ~ .  In fact the expansion in inverse powers of the 
logarithm converges rather slowly, but we have an explicit expression for these correc- 
tions to scaling which, when it is subtracted from the numerical results, leaves only 
corrections of order p-'. 

In section 4 a somewhat more general method is introduced. This method relies 
on the fact that only bands close to E = 0 make significant contributions, and in that 
neighbourhood the WKE method can be used to study the wavefunctions. In this way 
we get explicit approximations for the eigenvalues, which can be expressed as the 
zeros of a small number of explicit functions of analytic form. We take the logarithm 
of the ratio of the function whose zeros give the tops of the sub-bands to the function 
whose zeros give the bottoms and integrate this round a closed curve to get an explicit 
expression for the measure of the spectrum. This method is used first for the case 
q = 1,  where the same result is obtained that was obtained in section 3, and i s  then 
used for a detailed examination of the case q = 2, p odd. We find that the corrections 
to scaling vanish in this approximation for q = 2, leaving only corrections of order p - 2 ,  
which we have neglected throughout. These results are in accord with our numerical 
work, which showed that the corrections to scaling were particularly large for q = 1, 
and were proportional to p-' for q = 2. 

In section 5 there is some discussion of how these results can be generalized to 
other small values of the numerator. We do not carry out the calculations for any other 
case in detail, as the set of equations which must be derived gets larger as q gets larger, 
but we show that the qualitative difference between odd and even values of q should 
persist so long as q is sufficiently small that the WKB method is valid throughout the 
region of interest. 
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2. Numerical results 

In BWI numerical work appeared to show that, for the case V, = V,, 

lim p W ( q / p )  = C (2.1) 
p-.- 

where C is a constant which does not depend on how q is related to p.  It was found 
in BWZ that this common limit C is 32G/.rr, where G is the Catalan constant. For odd 
p the convergence to the limit is always from below, while for even p the convergence 
is from above. The speed of convergence to this limit does depend strongly on the 
form of q. For q = 2 and p odd, and for p even and q = p j 2  - 1, the correction terms 
were of order P - ~ ,  while for q = 1 the correction terms were found to fall off slower 
than P - ' ' ~ .  For some other cases examined in BWI, such as the Fibonacci sequence, 
the convergence also seemed to he fairly fast. 

To illustrate this dependence on q we show in figure 1 the value of ( - l ) p ( p W - C )  
for different q with p fixed. This figure shows the results at VI = V, for p = 199 and 
p = 194, but the results for other values of p and for V, # V, are similar. The convergence 
is slow for small odd values of q, both for odd and even p, and it is particularly slow 
for q = 1. For even p the convergence is fast for q / p  close to f ,  while it is slow for 
odd p .  In general there is slow convergence for p / q  close to any integer for odd p or 
to an odd integer for even p ,  and other peaks in I p W -  CI come for values of q / p  close 
to other simple fractions. 

3. Correction for q = 1 

The case q =  1 is anomalous in two respects. The value of I p W -  CI is much larger 
than for any other value of q, and an exact expression was derived for this expression 
in terms of the Green function in BWZ. The total bandwidth for the Harper equation 
with q5 = l / p  for p odd is calculated by integrating 

I n [ r G ~ ~ o t ( z ) G b ( z ) l G ~ ~ ( z ) l  (3.1) 
along the imaginary axis. Here s = ( p  - 1 ) / 2  and the superscripts of the Green functions 
G ( z )  denote the odd and even boundary conditions at 0 and p / 2 .  The Green functions 
can be written in terms of solutions of (1.1) for E = z. Then the integral is 

where a. and b. are solutions which satisfy the boundary conditions a,+, = a,, bo = 0 
respectively. 

In BWZ these functions were evaluated by approximating the difference equation 
by a differential equation, and replacing the cosine in (1.1) by parabolas centred at 
the maximum and minimum (for a, and b. respectively). Most of the errors introduced 
into the evaluation of p W  by these approximations are of order P - ~ ,  but there is a 
non-penurbative correction due to the use of the wrong boundary conditions when 
the cosine curve is replaced by a parabola. Figure 2 shows the results of numerical 
evaluations of the Green function G&+( E)  with E = iz and V, = V,. The discrepancy 
at small z between the exact Gl:(iz) and the approximation used in BWZ can be 
observed. 
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pz/in 

Figure 2. The modulus of the rescaled Green function 4p-”‘G&+:(E) for the imaginary 
energy E = i i  is platted against the rescaled energy pz/4w. The dsahed line is the result 
in Bw2,thesolidlineisforp=4n+3 :(P=99),andthedottedl ineisforp=4n+I (p=101). 
The Green function is calculated as the inverse of ( iz -H++)  where H‘* is the matrix 
obeying even-even boundary condition at 0 and pI2 .  T h e  explicit expression for Hi* i s  
given in B W I ,  Since Hi’ is tridiagonal, the numerical value of its determinant, and therefore 
the diagonal elements o f  the Green function, is very easy to obtain. 

I n  order to obtain boundary conditions which are better than those used in BWZ 

we use the WKB approximation forthe solutions to (1.1) between the two turning points 
at 0 and p/2, and use the approximation of the cosine curve by a parabola to obtain 
a connection formula. At the turning points the two independent solutions, cr and 
c., for the imaginary energy E = iz, are given in BWZ as - 

for n around zero and 

(3.3) 

(3.4) 

for n around p / 2 ,  where a, p are constants which can be calculated by WKB approxima- 
tion when the two points at n = 0 and n = p / 2  are connected, and D,,.(z) is the parabolic 
cylinder function (Whittaker and Watson 1952). 



4060 D J Thouless and Yong Tan 

In the following the WKB solution c. = e m i n )  is used in (1.1) which then becomes 

1 
4! 

+ " ( n ) + -  +'*'(n)+.  . . 

=iz-2cos - n  . (: 1 
If we assume + ' ( n )  is dominant, the solutions of first order are 

+'( n )  =cosh-'( :-cos(: n)) . 

(3.5) 

(3.6) 

We are interested in the case of z small, p large, and s i n ( 2 m l p )  not too small (not 
too close to the turning points). To first order in z we have 

(3.7) 

where the last term comes from the second derivative + " ( n ) .  Furthermore it can be 
shown that the higher-order terms in the two small parameters, L and llp, can be 
neglected in comparison with the terms which we have kept. Integrating (3.7), we have 
the WKB solutions 

( tan- :') -$In ( sin- 2y)] , (3.8) 

The asymptotic expansions of the parabolic cylinder functions of (3.3) and (3.4) 
are given in essentially the same form by Whittaker and Watson (1952). so one can 
match the coefficients a t  the two turning points to get the results 

(3.9) 

From these two solutions we can construct solutions with the required symmetry at 0 
and p/2. For example, we can formulate a symmetric solution about n = p / 2  as 
0, = cT+ c;-"; explicitly, for n close to p/2, 

.D-il121+c,zi4,1(m) + ~ ~ - i ~ ~ z ~ + i p x ~ 4 n l ( - m )  (3.10) 

where m = e - i ! " / 4 ' 2 F  7rlp(p/2 - n ) .  D-(,i21-ipz14,.l(-m) is also a solution which can be 
expressed in terms of the parabolic cylinder functions with positive variable, by using 
the connection formula at the turning point, 

(Whirtaker and Watson 1952). In this way one should he able to evaluate the coefficients 
in front of two independent solutions, and the solution which satisfies the boundary 
condition a,,, = a ,  can be written as 

(3.12) 
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where y = pr/4?r. Similarly the solution which satisfies bo = 0 can also be written as 

When these solutions are used to construct the Green functions, they are found to fit 
the numerical calculations described in the last section very well. 

To obtain the total bandwidth, one just substitutes the solutions into (3.2). The 
value of the parabolic cylinder function at zero is used, we also need the relation 
between D-,lz-y(0)  and D-,/2+y(0) ,  and between their first derivative, which can all 
be obtained from (3.11). After some manipulations, the rescaled total bandwidth pW 
is found to be C with an additional integral, 

where a factor (-l)p“ is added for the convenience of our following calculations and 
A is a cutoff for the reason that our approximation is valid only for the small y. This 
integral can be expanded as a series in l/(In4p/?r)’, with the leading term equal to 
zero, but the series converges very slowly. However, its numerical value can be found 
very easily since the integrand peaks sharply somewhere near y = 0  and is very small 
for quite a long range of y ;  A is chosen to lie in this range. Where y > 4 e p / ~  the 
integrand starts oscillating, but the WKB approximation used to derive the form of the 
integrand is no longer valid. This integral is in agreement with the numerical results 
for C-pW to one part in lo4 generally, in the range 9 9 s p s 2 9 9 ,  and the difference 
between this result and the numerical one is proportional to p - l .  as one would expect 
from perturbation theory. 

4. Explicit approximation for band edges 

In this section, we introduce a method which can be applied to more general cases. 
The method introduced in BWZ and exploited in section 3 of this paper relies on the 
particular ordering of eigenstates of (1.1) with different symmetries. For q # 1 the 
eigenvalues are differently ordered, and the method based on the integration of the 
Green function along the imaginary axis can no longer be used. Instead, explicit 
approximate equations are derived for the eigenvalues, and these equations are then 
used in conjunction with a contour integral to perform the sum which gives the total 
bandwidth. The difficulty is that the larger the numerator q is the more separate 
equations have to be treated. However, some general features can already be seen from 
the treatments of the cases q = 1 and q = 2 that some tentative generalizations can be 
made. 

4.1. General formulation 

As was discussed in BWI,  the band edges can be found as eigenvalues of (1.1) with 
particular symmetries, and they form four families. There are those with v = O  which 
are even under reflection about both n = 0 and n = p/2, or odd under reflection about 
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both points, and we denote these eigenvalues as EL+ and E,- respectively. There are 
also those with U = n+ which are even under reflection about one point and odd under 
reflection about the other point, and we denote these as 8;- and %;+. For odd values 
of p there are simple relations such as EL+ = -%+- , so that only two of the four sets 
of eigenvalues needs to be considered explicitly. For even p all four classes have to 
be considered, as negative and positive pairs lie within the same class. This feature 
makes the case p odd somewhat less cumbersome to deal with, which is why we have 
concentrated attention on p odd. 

It is important that, in the case of p large and q small, the bandwidth can be written 
in such a way that only eigenvalues near E = 0 contribute significantly. For V, = V2 
no trick is required for this, as only the central bands have significant width, but for 
V I #  V2 the technique used in Bwi to express W-41V2- V,l in terms of the E - +  as 
well as of the Et+ and E - -  must be used. If the eigenvalues are numbered in such a 
way that the extrema1 band edges are given by * E l + ,  while the intermediate band 
gaps are bounded by E;-> E:+ for n < r and by  E ; -  < E:+ for n > r, then the results 
of BWI imply 

D .I Thouless and Yong Tan 

W=4\V2-VlI+4 z (E,+-E, - )+4  1 ( E , + - € : + ) .  (4.1) 
n=, n=,+, 

In section 3, we have obtained the solutions to ( 1 . 1 )  obeying one-point boundary 
conditions, and application of a second boundary condition to such a solution gives 
the equation whose solution gives an approximation for the eigenvalues. From such 
equations we construct an analytic function + ( z )  which has simple poles and zeros at 
the required eigenvalues bi and ai ,  so that the expression for the bandwidth is written 
in the form 

4.2. Numerator unity and odd p 

In order to illustrate how this method works and examine its validity, we start with 
the case + = l /p  with odd p, for which the bandwidth was obtained in section 3. The 
solutions for imaginary energy with one-point boundary conditions are given in (3.12) 
or (3.13). If we impose a second boundary condition at the other turning point, namely 
a,=O or a - ,  = a ,  for an> or b,,, = -b, for b., and make an analytic continuation to 
the real axis, approximation for the quantized eigenvalues are obtained: 

Im In r(f- ix)+x In--f tan-' s inh(m) = ( m  -$)n for E - -  (4.3) 

for Et+ (4.4) 

4P 

4P 

77 

Im In I'(i-ix)+x In-+$ tan-' sinh(nx) = ( m  -$)T 

where x=pE/4n ,  m is integer, and E-- and E++ are band edges. 
Equations (4.3) and (4.4) give one set of band edges while the other set, denoted 

by %+- and K+, is found by changing the sign of x in these equations. Equivalently 
the other set is found by replacing m - $  by m+a on the right-hand side of these 
equations. We name the equations after the substitution as (4.3-) and (4.4-1 for 
convenience. The total bandwidth is the sum over all the intervals between two 

n 
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successive hand edges. By comparing (4.3) and (4.4) with each other, one may conclude 
that E ,  is higher than EL+ on the positive real axis, and the ordering is reversed on 
the negative real axis. If (4.3-) and (4.4-) are included, then the spectrum is complete. 
The conclusion can be drawn that only those bands around the spectrum centre (small 
x) are appreciably wide; for x large the hands are exponentially narrow and these 
narrow bands are almost equally spaced. The above arguments have been checked to 
agree with numerical results. 

Now we calculate the total bandwidth by Cauchy integral with the contour from 
im to -im along the imaginary axis and along a semicircle R e'' with R + co and 0 
from -TI2  to rrI2, so that the positive zeros are included. Assuming that the contribu- 
tion from the semicircle vanishes if the integrand becomes zero as R --f 00, the integral 
along the imaginary axis is left, after integrating in parts, which becomes 

11- In 4( iy)  dy =x (a i -  bj).  (4.5) 27r ~m 

To construct +(z) in (4.2), one nseeds to rewrite (4.3) and (4.4) in such a way that 
the explicit dependence on the integer m is removed. After some algebra they become 

7r 
f - - (x)=i+sinh TX- 

[r($-ix)]' 

v 
f"(x) = i-sinh v x  - 

[r(f-ix)]' 

while the other set of band edges is given by f--(-x)=O, f"(-x)=O. Before 
evaluating the integral, one should be aware that these two equations have zeros of 
order 2 on the imaginary axis at half-integer multiples of i. To get rid of these we 
multiply f--(ix) and f"(ix) by [r(a+x/Z)]' and [r(a+x/2)]' respectively. Another 
factor of (2/y)2 is introduced to ensure that the argument of the logarithm tends to 
unity at infinity. Provided that there are then no zeros and poles away from the real 
axis, the total bandwidth p W, for p = 4n + 3, is 

Since the argument of the logarithm has a double pole at the origin, the integration 
must be displaced slightly from the origin. After some manipulations, we find that the 
integration gives 32G/v with the correction we had before in (3.14). For p = 4n + 1 
there is a similar result where the two sets of band edges are exchanged. 

4.3. Numerator unity and even p 

The total bandwidth for q = 1 with even p can be evaluated in the same manner. Again 
one set of the band edges is described by (4.3) and (4.4) with ( m - a ) r  replaced by 
m r  for v = O  (in the case p=4n;  it is quite similar for p=4n+2) .  It is understood 
now that xi+ = x-- = 0 is a degenerate solution, so two bands are touching at E = 0. 
If on the right-hand side of (4.3) and (4.4) ( m + f ) r  are substituted instead, the other 
set ofband edges, for U = 7r/p, can be obtained. The reason is that U = 7r/p is equivalent 
to the translational shift of cosine potential from n to n + f ,  so we connect two turning 
points from f to p/2-f rather than from 0 to p/2  as in Y = 0. Using the WKB solutions 
c: ,  we find that an additional phase exp(Fi(r /2))  should be added to a and p 
respectively. 
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The band edges given by xi+ and x-- can be substituted into the expression for 
the total bandwidth. Again pW is found to be 3 2 G l ~  and the correction is given by 
(3.14), with a positive coefficient twice as large as is found for odd p. This is in 
agreement with what numerical results give. 

4.4. Numerator 2 and odd p 

For 4 = 2/p with p odd, the same procedure is followed as for l lp.  We start from two 
independent solutions for n around 0, find their corresponding forms around p/2, and 
impose odd or even boundary conditions at 0 and p/2 in order to obtain corresponding 
eigenvalues. But p should be replaced by pl2  in a and p before they can be used 
again to connect two turning points, namely from 0 to pj4 and from p/4 to p/2, and 
the connection formula at  one turning point p/4, equation (3.11), should be included. 
Here we omit the laborious derivation and give directly the equations determining the 
eigenvalues for different boundary conditions. These equations are 

Im In r(t - ix) + x In --f tan-' ewx = f(m -$)T for E-+  (4.9) 2P 
T 

2P I e =x 
Im In r(f - ix) + x In --7 tan-' J9 = (m -Q)T 

T 

= ( m + i ) r  for Et+ 2P e wx 

J2+eTi;;; Im In r ( f - ix)+x  In -+f tan-' 
?r 

= ( m + i ) T  for E -  2P e wx 

JGF= Im In r(; - ix) + x In - - 4 tan-' 
T 

(4.10a) 

(4.10b) 

(4.11a) 

(4.11 b)  

Here x=pEIB?r ,  m isanyintegerandp=4n+3,Theequationsforp=4n+l can be 
derived similarly. 

For present case, two adjacent edges given by E++, which are getting closer as E 
goes large, alternate with those by E - - ,  in other words the edges in E++ or E - -  act 
as band top and bottom alternatively. The best way to deal with it is to classify band 
edges into four groups, namely given by (4.8a, b )  and (4.90, b), such that in one group, 

complete spectrum, the band tops are given by  (4.9b-), (4.8b), (4.8a-) and ( 4 . 9 ~ )  
while the rest gives the band bottom, where the superscript minus sign stands for the 
other set of band edges which is given with sign of x changed similar to q = 1 case. 
An adaptation of (4.1) to  this situation gives the total band width as 

I A  a h \  FA- :-.-*n-..-a -11 -Alnr h--A +An- fAr -11 nn&t:sin nnn.tix,n tmIIIPE C n r  \-?.ou, X " 1  I I I D L L l l l l L ,  a11 '"6C" -1- "a.." L " y Y  IY.  U 1 1  y Y " ' L L , -  UL." ..'-"La-- ....VI=. - V .  

For the contour integral of (4.2) we need 

(4.9a)(4.9b) 
'(') =(4.10a)(4.11 b)  

(4.12) 
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where we divide (4.9) as (4.90, b) for even and odd m respectively. Equation (4.7) can 
be written without the parameter m in the form 

while (4.10a) and (4.11b) have the form 

. , ~ - i e m x r 2 e - i ( r / 4 1  2+e-  ?r 

[r(t- ix)] 

To get rid of zeros on the imaginary axis we should multiply (4.15) by [r(:-i(z/2))l2, 
and (4.14) by - i (~ /2) ) ]"~[ r ( i -  i ( ~ / 2 ) ) ] ' / ~ ,  

Again (4.2). together with (4.13), gives the rescaled total bandwidth pW as 

where the contour is z = R eiS with R sufficiently large. For the same reason as in the 
calculation of correction to q = 1 case, R can not be taken to  infinity since after a 
certain value of R, of the order of 2 ep/?r, the right order of band edges is destroyed, 
and the WKE approximation is no longer valid. This gives only an exponentially small 
correction, and the rescaled total bandwidth is 

where contour C is 71 < e s 271. The integral is equivalent to 

(4.18) 

which is 32G/x, with no logarithmic corrections. The limit of the integral could be 
!&e!! !D infi.ni!y beczcse !he Integracd is expccex!ia!!y decnying, so an!y an expofizz- 
tially small correction is ignored. 

5. Discussion 

In sections 3 and 4.2 we found logarithmic corrections to IpW- CI for fractions with 
numerator unity, similar to the corrections found in the theory of critical phenomena 
when there are confluent singularities. In contrast, in section 4.4 we found that for 
numerator 2 there are no such logarithmic corrections, so that the leading corrections 
are the perturbative terms of order p-*  that we have ignored. The structural difference 
that leads to this outcome is clear. In the case of numerator unity there is a contour 
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integral that surrounds the positive real axis, and it is the contribution from close to 
the origin that gives the logarithmic terms. In the case of numerator 2 the contour 
integral (4.16) surrounds the entire real axis, and there are no contributions from close 
to the origin. In turn, the reason for this difference is for 9 = 1 the ordering of the 
band edges Et+ and E--  is reversed between the negative real axis and the positive 
real axis, whereas for q = 2 there is no such reversal at the origin, but the reversal 
occurs for large energies where the contribution to the bandwidth is negligible. It is 
this reversai of the order of the eigenvaiues of diiierent symmetries that necessitates 
a contour integral passing through the origin and giving logarithmic corrections, 

This observation allows us to generalize the argument to other fixed values of the 
numerator 9 when the denominator p is large. Van Mouche (1989) has proved that 
the ordering of eigenvalues does not change as a function of V , l V , ,  so we can use 
perturbative arguments valid for very small values of this ratio to work out the ordering. 
In this limit the gaps occur at 2V2 cos(2mq/p), and the corresponding band edges 
are ordered with E+'<E-- for O<n<p/4,  and with E++> E - -  forp /4<n<p/2 .  
The reversal therefore occurs when n is close to p/4, which corresponds to gaps close 
to zero energy for odd 9, but close to the extremals at 1 2  V, for even 9. This allows 
two features of the numerical results shown in figure 1 to be understood. There are 
no logarithmic corrections to pW for small even values of q, because there is no change 
in the ordering of the band edges close to the origin. For small odd values of q there 
are logarithmic corrections, but their magnitude decreases as q increases, since only 
two of the 29 separate groups of eigenvalues contributes to the logarithmic terms. 

The methods we have used assume q<< 6, since it is only in that case that the 
regions in which the W:CB approximation can be used and those in which the parabolic 
cylinder functions are a good approximation cover the entire space. To understand 
ache: feFpe!-:es offigu:e 1, snch as thase we drew attemian to ix section 2, it is necessa:;. 
to combine Azbel's (1964) continued fraction analysis ofthe spectrum with the methods 
we have used here. A plausible argument can be constructed for some of the features 
of the numerical results, but we have not yet pursued these arguments in detail. 

Acknowledgment 

This work was supported in part by the US National Science Foundation under Grant 
No. DMR 89-16052. 

References 

Aubry S and Andre G 1980 Ann. Israel Phys. Soc. YOI 3 (Bristol: Adam Hilger) p 113 
Arbel M Ya 1964 Zh. Eksp. Teor. Fiz. 46 929 
Bell S C and Stinchcombe R B 1989 I Phys. A: Molh. Gen. 22 717 
Harper P G 1955 Prw. P h p .  Sw. A 68 874 
Hofstadter D R 1976 Phys. Rev. B 14 2239 
Sokoloff J B 1985 Phys. Rep. 126 189 
Thouless D 1 1983 Phyr. Reo. 28 4212 
- 1990a NumberTheoryond?hysics ed J M Luck, P Moussa and M Waldschmidt (Berlin: Springer) p 170-6 
- 1990b Commun. Molh. Phys. 127 187 
Van Mouche P 1989 Commlm. Marh. Phys. 122 23 
Whittaker E T and Watson G N 1952 Course of Modern Anolyrir (Cambridge: Cambridge University Press) 

Wilkinson M 1987 J. Phys. A: Math. Gen. 20 4337 
p 348-9 


